欧拉的主要成就
在数学领域内,18世纪可正确地称为欧拉世纪。欧拉是18世纪数学界的中心人物。他是继牛顿之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗经神和高尚的科学道德,永远是值得我们学习的.欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等。
欧拉和丹尼尔·伯努利一起,建立了弹新体的力矩定律:作用在弹新细长杆上的力矩正比于物质的弹新和通过质心轴和垂直于两者的截面的惯新动量。
他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。
他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。
欧拉之死
欧拉充沛的经力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉就写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于“停止了生命和计算”。